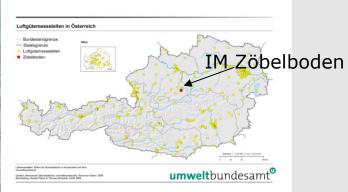
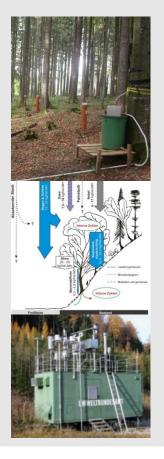
AGENCY AUSTRIA **UMWEIT**bundesamt[®]

Measured and modelled nitrogen fluxes at the ICP IM site Zöbelboden, Austria


Thomas Dirnböck

LTER Zöbelboden - overview

- Established in the year 1992 as the Austrian's contribution to ICP Integrated Monitoring (UN-ECE) of air pollution effects in Europe
- Forested, 90 ha Karst catchment (550 950 m a.s.l) in the Northern Limestone Alps
- Combines high quality air measurements (EMEP) with integrated ecosystem monitoring
- Today LTER Zöbelboden serves as an ecosystem monitoring and research site for the effects of air pollution and climate change including biodiversity
- Part of LTER Europe, EU ALTER-Net (FP6), EU EXPEER (FP7), LTER Austria and LTSER Eisenwurzen

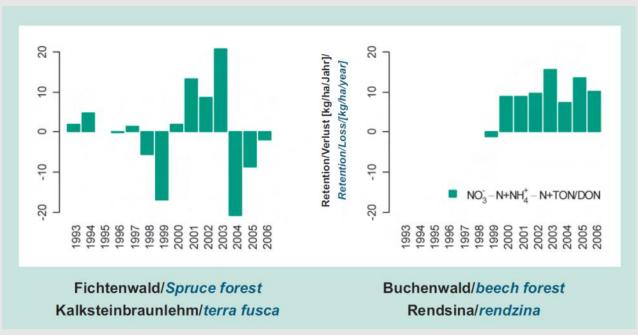


Background & research questions

- Karst areas provide 50% of the Austrian drinking water
- Owing to a very fast runoff dynamic the water quality is highly vulnerable to forest disturbances from management but also from climate change
- How can forestry minimize negative effects of climate change on water quantity and quality?
- We focused on nitrate because high nitrogen pollution occurs in many Karst areas in Austria

Excess N deposition at Zöbelboden

Pre-industrial: 3-5 kg/ha/year


Critical load for eutrophication: 10 – 20 kg/ha/year

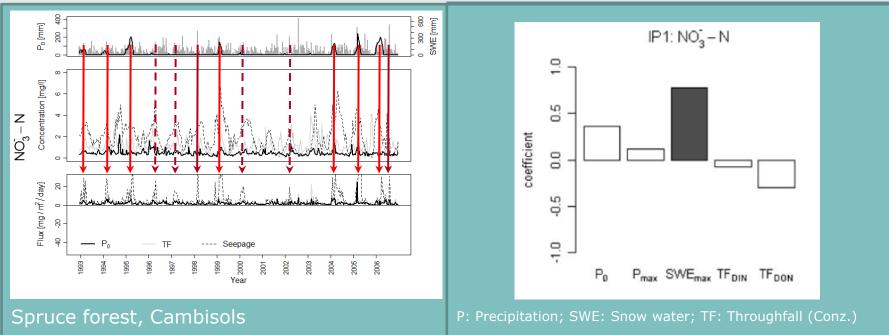
Measured exceedance

- Throughfall + stemflow 21 (beech forest) 27 (spruce forest) kg/ha/year
- Total deposition (including modelled dry and fog deposition) sums up to 30-40 kg/ha/year

AGENCY AUSTRIA **umwelt**bundesamt

Annual N balances at two forest sites

- Very high variation in Norway spruce forest with peaks up to 34 kg Nitrat-N/ha/yr
 - This is in the range of polluted or disturbed sites but there are no other signs of N saturation
 - Strong throughflow events, are typical for Karst areas, even when sites are N limited (... may hide saturation effects)

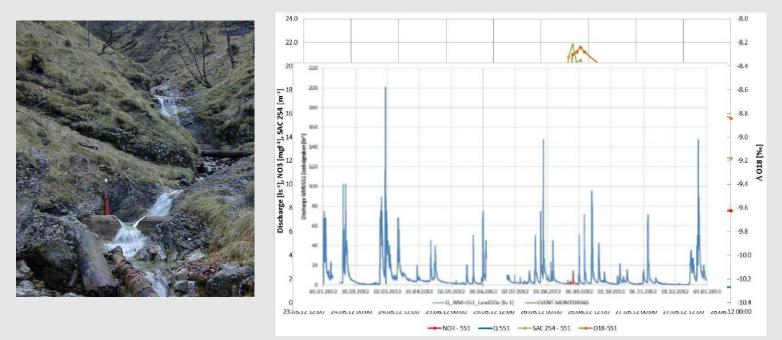

European beech forest accumulates N

Jost, G., Dirnböck, T., Grabner, M.-T. & Mirtl, M. 2010. Nitrogen leaching of two forest ecosystems in a Karst watershed. *Water Air and Soil Pollution*

5

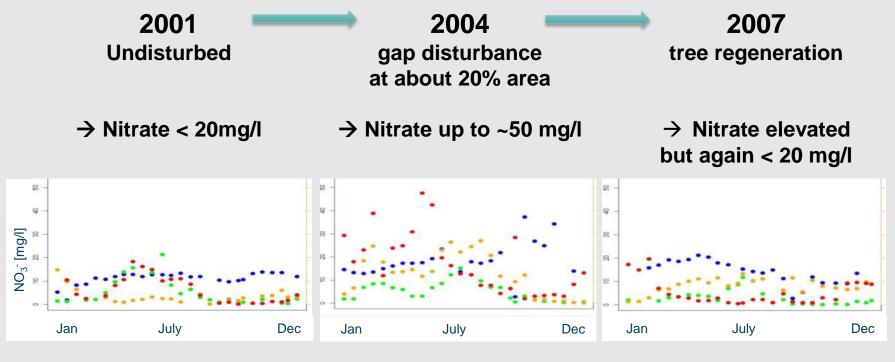
What controls nitrate leaching at the forest stand scale?

- Nitrate leaching is predominately controlled by snow melt and heavy rain events
- Climate events play an important role (drought year 2003, wind throw bark beetle)


Jost, G., Dirnböck, T., Grabner, M.-T. & Mirtl, M. 2010. Nitrogen leaching of two forest ecosystems in a Karst watershed. *Water Air and Soil Pollution*

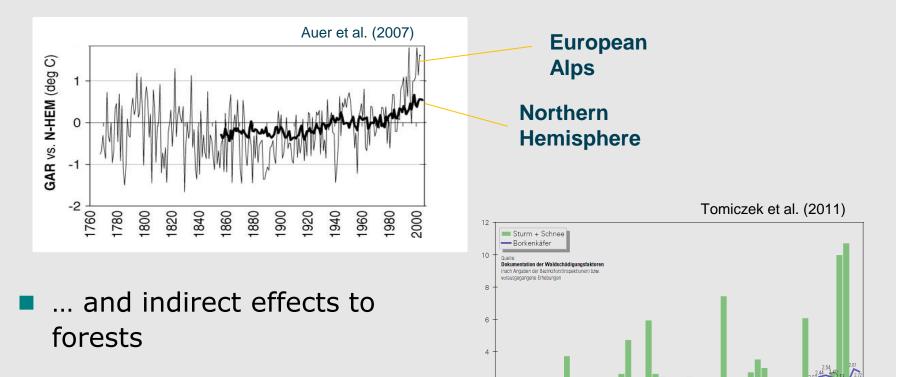
6

Catchment scale Nitrate runoff dynamic during hydrological events


- Two unexceptional (not strong!) summer rain events (36 mm precipitation during 7 days)
- Rapid increase in nitrate concentrations after a short dillution phase

Stadler, H. 2013. unpublished report

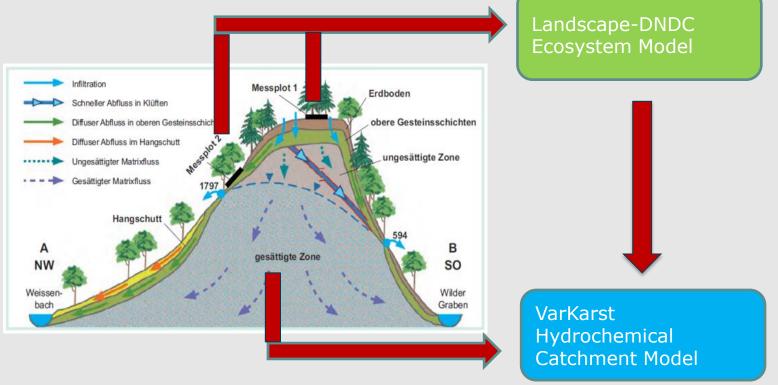
Nitrate loss from soils after small scale forest disturbance



Norway Spruce forest on Cambisols/Leptosols; windthrow + bark beetle

AGENCY AUSTRIA **umwelt**bundesamt[®]

2010 2010


Climate change

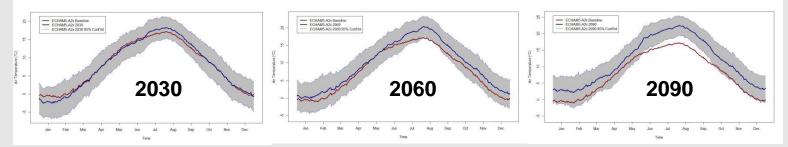
2

DNDC at forest stand level together with the hydrological catchment model VarKarst

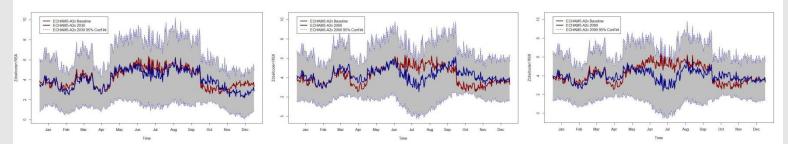
Climate and management scenarios

Climate

- Daily values for temperature, precipitation, global radiation, humidity, and wind speed
- Synthesized from several downscaling Scenarios (A1B, B1 & A2); resolution 10 km
- ... and two GCM models: ECHAM5/MPI-OM, HadCM3
- In using a weather generator (ClimGen) which is calibrated with the long-term measured data


Forest management

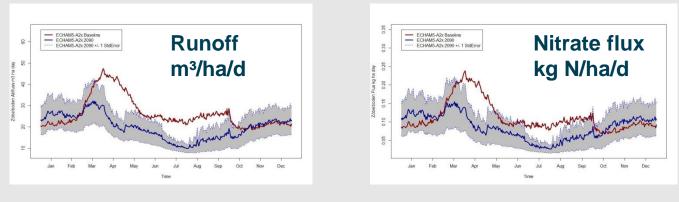
- Low-intervention forest management (spruce-beech forest with single tree harvest)
- Medium-intervention shelterwood Norway spruce management
- **High-intervention** clearcut Norway spruce management


AGENCY AUSTRIA **umwelt**bundesamt[®]

Climate Scenarios

- Increasing temperature; strongest temperature increase will occur in summer
- Decreasing precipitation in summer, increase in winter (BUT high GCM specific variation!)

Temperature scenarios (ECHAM5-A2) for Zöbelboden showing mean (bold line) and variation (95% confidence interval in grey shade) of a 150 years time series. Baseline refers to the years 1990 to 2010 (bold red line).

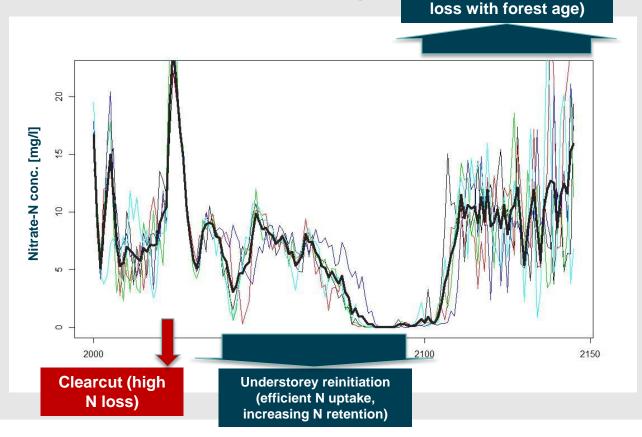


Precipitation scenarios (ECHAM5-A2) for Zöbelboden showing mean (bold line) and variation (95% confidence interval in grey shade) of a 150 years time series. Baseline refers to the years 1990 to 2010 (bold red line).

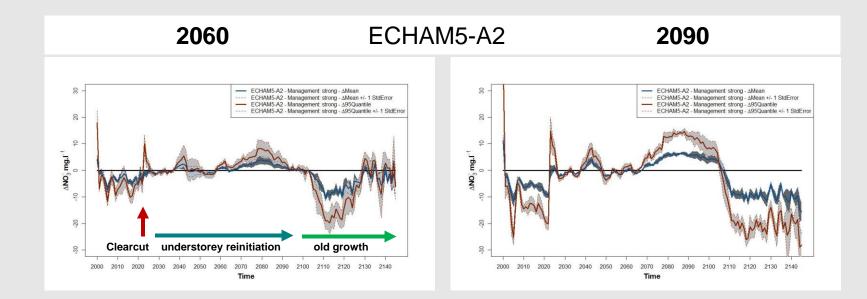
AGENCY AUSTRIA **Umwelt**bundesamt[®]

CC Effects to catchment runoff and water quality

- Climate change will **decrease water runoff in the summer** months
- During the coming 1-3 decades runoff in winter/spring will increase due to more precipitation, less snow and higher snowmelt in early spring, later on runoff decreases throughout the year
- Direct climate change effects rather decrease nitrate leaching
 - Higher nitrate leaching may occur in winter/spring during the next 1-3 decades



Baseline (1990-2010) ECHAM-A2, 2080-2100


Management effect upon nitrate leaching (Clearcut Norway Spruce Management)

 L-DNDC Nitrate seepage flux during a ~120 yr rotation time (Climate baseline 1990 to 2010)
Old growth (increasing N

Management x Climate effects to nitrate leaching

- Summer drought causes retarded tree regeneration
- Less N-uptake and more water percolation in winter causes higher seepage Nitrate concentrations during understorey reinitiation
- Mature forests have a higher growth rate under climate change and therefore retain Nitrate more efficiently

AGENCY AUSTRIA **umwelt**bundesamt[®]

Conclusions

- High N deposition cause high Nitrate loss in leaky karst catchments
 - … even if the forests are not N saturated
- Climate change will decrease water runoff in summer months
 - ... so that drinking water shortage may become an issue in some regions
- During the coming 1-3 decades runoff in winter/spring will increase due to more precipitation, less snow and higher snowmelt in early spring
- Direct climate change effects to water quality are lower than impacts of forest management practices, however
 - During understorey reinitiation in clearcut management the risk of high Nitrate concentrations in the runoff increases due to retardation in tree growth
 - Since the reverse happens in the old growth stage total nitrate export might be levelled out at the catchment scale
- Indirect climate change effects (bark beetle, windthrow) might be more severe for drinking water quality!
 - Adaptation towards stable mixed conifer-decideous forests are recommended
 - Continuous forest management lowers the risk of karst water pollution

Contact & Information

Dr. Thomas Dirnböck

Tel. 0043-1-31304-3442

E-Mail: thomas.dirnboeck@umweltbundesamt.at

Umweltbundesamt www.umweltbundesamt.at